Complete Curriculum

3-Month Intensive AI Program

Research-driven curriculum designed to transform you into an industry-ready AI professional

Month 1: Foundations

Building blocks - Python, Statistics, ML Basics, and AI Understanding

🐍

Python Foundation

4 modules β€’ 2 weeks

Modules:

  • β€’ Module 1: Python Basics (Variables, Data Types, Operators)
  • β€’ Module 2: Control Statements (IF-ELSE, Loops, BREAK/CONTINUE)
  • β€’ Module 3: Data Structures (List, Tuple, Sets, Dictionary)
  • β€’ Module 4: Functions (Parameters, Lambda, Map/Reduce/Filter)

Learning Outcomes:

  • β€’ Master Python syntax and data structures
  • β€’ Implement control flow and functions
  • β€’ Handle different data types efficiently
  • β€’ Apply functional programming concepts
πŸ“Š

Statistics Essentials

4 modules β€’ 1 week

Modules:

  • β€’ Module 1: Overview of Statistics (Descriptive/Inferential, Data Types)
  • β€’ Module 2: Harnessing Data (Sampling, Cochran's Formula, Sampling Methods)
  • β€’ Module 3: EDA (Central Tendencies, Distribution, CLT, Skewness)
  • β€’ Module 4: Hypothesis Testing (P-Value, T-tests, ANOVA)

Learning Outcomes:

  • β€’ Understand statistical concepts and sampling
  • β€’ Perform exploratory data analysis
  • β€’ Conduct hypothesis testing
  • β€’ Apply statistical methods to ML problems
🧠

Artificial Intelligence Foundation

6 modules β€’ 2 weeks

Modules:

  • β€’ Module 1: AI Overview (Evolution, History, AI vs ML vs DS)
  • β€’ Module 2: Deep Learning Introduction (DNN, Feature Learning)
  • β€’ Module 3: TensorFlow Foundation (Structure, ML Modeling)
  • β€’ Module 4: Computer Vision (CNN, Image Classification)
  • β€’ Module 5: NLP (Bag of Words, Word Embedding, BERT)
  • β€’ Module 6: AI Ethics (Bias, Trust, Ethical Concerns)

Learning Outcomes:

  • β€’ Understand AI fundamentals and applications
  • β€’ Implement deep learning models with TensorFlow
  • β€’ Build CNN models for image classification
  • β€’ Apply NLP techniques and BERT
  • β€’ Address AI ethics and bias concerns
πŸ€–

Machine Learning Associate

9 modules β€’ 3 weeks

Modules:

  • β€’ Module 1: ML Introduction (Clustering, Classification, Regression)
  • β€’ Module 2: NumPy Package (Arrays, Matrix Operations)
  • β€’ Module 3: Pandas Package (Series, DataFrame, Data Munging)
  • β€’ Module 4: Matplotlib (Visualization, Plots, Sub-plots)
  • β€’ Module 5: Seaborn (Advanced Data Visualizations)
  • β€’ Module 6: Linear Regression (Best Fit Line, Evaluation)
  • β€’ Module 7: Logistic Regression (Sigmoid Curve, Classification)
  • β€’ Module 8: K-Means Clustering (Unsupervised Learning)
  • β€’ Module 9: KNN (Nearest Neighbor Concept)

Learning Outcomes:

  • β€’ Master Python data science libraries (NumPy, Pandas)
  • β€’ Create effective data visualizations
  • β€’ Implement core ML algorithms
  • β€’ Build end-to-end ML pipelines
  • β€’ Evaluate and optimize model performance
πŸ“

Git & Version Control

5 modules β€’ 1 week

Modules:

  • β€’ Module 1: Git Introduction (Version Control, Workflow, Architecture)
  • β€’ Module 2: Repository & GitHub (Init, User Setup, Remote Repos)
  • β€’ Module 3: Commits, Pull, Fetch & Push (Conflicts Resolution)
  • β€’ Module 4: Tagging, Branching & Merging (Branches, Merge, Reset)
  • β€’ Module 5: GitHub & Bitbucket (Collaboration, Remote Workflows)

Learning Outcomes:

  • β€’ Master Git version control system
  • β€’ Collaborate effectively on projects
  • β€’ Manage branches and resolve conflicts
  • β€’ Use GitHub for project management

Month 2: Advanced Machine Learning & Deep Learning

Advanced ML algorithms, Feature Engineering, Deep Learning, and Deployment

🎯

Machine Learning Expert

7 modules β€’ 3 weeks

Modules:

  • β€’ Module 1: Feature Engineering (Encoding, Scaling, Missing Values)
  • β€’ Module 2: Support Vector Machine (SVM, Kernel Trick)
  • β€’ Module 3: Principal Component Analysis (PCA)
  • β€’ Module 4: Decision Tree & Random Forest
  • β€’ Module 5: Ensemble Techniques - Bagging
  • β€’ Module 6: NaΓ―ve Bayes (Bayes' Theorem, Text Classification)
  • β€’ Module 7: Gradient Boosting & XGBoost

Learning Outcomes:

  • β€’ Master advanced ML algorithms
  • β€’ Implement feature engineering techniques
  • β€’ Build ensemble models
  • β€’ Optimize model performance
🧠

Artificial Intelligence Expert

11 modules β€’ 4 weeks

Modules:

  • β€’ Module 1: Neural Networks (Weight Init, Optimizers, Activation)
  • β€’ Module 2: Deep Neural Networks (Keras, MNIST)
  • β€’ Module 3: Computer Vision - Image Recognition (CNN, Transfer Learning)
  • β€’ Module 4: Object Detection (RCNN, YOLO, SSD)
  • β€’ Module 5: Recurrent Neural Networks (LSTM, Bi-directional)
  • β€’ Module 6: NLP (Regex, Word Embedding, BERT, GPT)
  • β€’ Module 7: Prompt Engineering
  • β€’ Module 8: Reinforcement Learning (MDP, Dynamic Programming)
  • β€’ Module 9: Deep Reinforcement Learning (DQN, OpenAI Gym)
  • β€’ Module 10: Generative AI - GAN (Core Concepts, Applications)
  • β€’ Module 11: Autoencoders (Vanilla, Denoising, Variational)

Learning Outcomes:

  • β€’ Build deep learning models with TensorFlow/Keras
  • β€’ Implement computer vision and NLP solutions
  • β€’ Master prompt engineering techniques
  • β€’ Create generative AI models (GANs, Autoencoders)
  • β€’ Apply reinforcement learning concepts

Month 3: AI Agents & Agentic Systems

Building autonomous AI agents using modern frameworks

πŸ—οΈ

Week 1: Foundations

Agentic Workflow, Agent Patterns, Orchestrating LLMs

Topics:

  • β€’ Understanding AI Agents & Agent Architecture
  • β€’ ReAct Pattern (Reasoning + Acting)
  • β€’ Planning and Reasoning in Agents
  • β€’ Tool Use and Memory Systems
  • β€’ Multi-LLM Orchestration
  • β€’ Chain of Thought & Sequential Execution

Project:

Personal Career Agent

  • β€’ Resume analysis and job recommendations
  • β€’ Interview preparation assistant
  • β€’ Career counseling AI agent
πŸ€–

Week 2-3: OpenAI Agents SDK

Assistants API, Threads, Code Interpreter, File Search

Topics:

  • β€’ OpenAI Assistants API & Threads
  • β€’ Code Interpreter & File Search
  • β€’ Tools vs Agents & Guardrails
  • β€’ Safety, Rate Limiting & Monitoring
  • β€’ Multi-agent Collaboration
  • β€’ Roles, Goals & Task Delegation

Skills:

  • β€’ Build intelligent assistants
  • β€’ Implement multi-agent systems
  • β€’ Handle tool integration
  • β€’ Manage agent communication
πŸ”—

Week 4-5: LangGraph & AutoGen

Graph-based workflows, Multi-agent conversations

LangGraph:

  • β€’ Graph-based agent workflows
  • β€’ State management & Conditional edges
  • β€’ Cycles and loops in graphs
  • β€’ Tools, Memory & Web Searches
  • β€’ RAG Integration

AutoGen:

  • β€’ Conversational agents
  • β€’ Group chat management
  • β€’ Human-in-the-loop
  • β€’ Agent teaching & specialization
  • β€’ Distributed agent systems
πŸ”—

Week 6: MCP (Model Context Protocol)

Server-client architecture, Context sharing, Multiple servers

Topics:

  • β€’ Understanding MCP protocol
  • β€’ Server-client architecture
  • β€’ Context sharing across applications
  • β€’ Building MCP servers and clients
  • β€’ Multiple local and remote servers
  • β€’ Load balancing & failover

Project:

AI Equity Traders

  • β€’ Multi-agent trading system
  • β€’ Real-time market data integration
  • β€’ Risk management & execution

Prerequisites for Each Section

Month 1 Prerequisites

  • β€’ Basic computer literacy
  • β€’ High school mathematics
  • β€’ No programming experience required
  • β€’ Dedication to learn

Month 2 Prerequisites

  • β€’ Complete Month 1 modules
  • β€’ Python programming skills
  • β€’ Basic ML understanding
  • β€’ Statistics knowledge

Month 3 Prerequisites

  • β€’ Complete Month 2 modules
  • β€’ Deep learning experience
  • β€’ API integration skills
  • β€’ System design understanding

Interactive Learning Features

Downloadable Curriculum PDF

Get the complete curriculum in PDF format with detailed module descriptions, learning outcomes, and project requirements.

Download PDF

Module-wise Expandable Content

Each module includes expandable sections with detailed explanations, code examples, and hands-on exercises.

Explore Modules

What You'll Master

Python programming & data science
Machine learning algorithms
Deep learning & neural networks
Large language models & NLP
Generative AI & LLMs
Prompt engineering & fine-tuning
RAG & vector databases
MLOps & model deployment
Computer vision & image processing
Natural language processing
AI Agents & Multi-agent systems
Production AI systems

Ready to Start Your AI Journey?

Join our comprehensive 3-month program and master AI